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Transmission line

Introduction A transmission line is a two-port network connecting a
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Transmission line theory

Transmission line theory bridges the gap between field
analysis and basic circuit theory.
Introduction

Lumped-element Magnetic field
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Lumped- (in) (ou)

Electric field
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It is of paramount importance to analyze:
Smith Chart . . i
o E microwave circuits;
® microwave devices.
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When must wire be considered a T-Line?

Introduction EleCtI’iCity Supplied to
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From lumped elements to distributed
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In circuit theory, lines connecting the various circuit

elements are considered as perfect wires, with no voltage

drop and no impedance associated to them:
lumped impedance circuits

Load

Generator

Z m The length of the wires
much smaller than \.

Ve

Lumped-circuit

is

At any given time, the measured voltage and current are the

same for each location on the same wire.
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When must wire be considered a T-Line?

Introduction

Lumped-element

For an ideal connecting wire, the magnitude of V; would be
constant at 1 V and the phase would be constant at 0°.

model
Lumped-
cllEimeEnt | B e —
N\ e ol I
model 08 T— \[=-~- lumped slement mode!
Telegrapher oo
equations E
Sos
UEE] e
propagation il
Traveling waves b pre PO o
Lossless
180
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120 AN
Special cases
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I .
Lossy 5 =T
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Introduction
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1
distance (wavelengths)

m The length of the
wire impacts the
load voltage at
distances less than
0.01\.

m Lumped and
distributed element
models exhibit
appreciable
differences at
about 0.10
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A first issue to be dealt with

The simplest problem consists of a voltage generator
connected to a load through a uniform T-line.

Is the impedance seen by the generator the same as the
impedance of the load ?

Z, THine \A mZ,#Z.

A
I " L=n3
L 2

How evaluating Z,, i.e., the input impedance of a T-line
terminated by a load.

Evaluating the equivalent impedance seen by the generator

m Except when
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Equivalent lumped-element circuit model

A uniform T-line is a distributed circuit that can be described
as a cascade of identical cells with infinitesimal length (AZz).

RAz LAz RAz LAz

GAZS ] caz G

Theoretical rationale

Under the assumption of T-line uniform along its length, once
the differential behavior of an elementary cell of the dis-
tributed circuit is determined in terms of voltage and current,
we can find a global differential equation describing the en-
tire T-line.
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A T-line that propagates a

transverse electromagnetic

(TEM) wave is schematically

represented as a two-wire
line.

i(z,t)
—
|
+
v(z,t)

|
< Az

The piece of line of
infinitesimal length Az can be
modeled as a
lumped-element circuit.
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Introduction

Lumped-element
model

Lumped-
element
model

Telegrapher
equations

w m R [%]: is the series resistance per unit length and it accounts
propagation for the finite conductivity of the individual conductors.

Traveling waves
P mL [g]: is the series inductance per unit length and it accounts
Torminated Tine for the total self-inductance of the two conductors.

Special cases

Lossy mG [%]: is the shunt conductance due to dielectric loss in the

femnaied e material within the two conductors.
Smith Chart

Introduction

A, mC [g]: is the shunt capacitance due to the close proximity of
e the two conductors.

Appendix
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Telegrapher equations - time domain

S The lumped-element circuit can be analyzed using

F Nunziata Kirchhoff’s current and voltage law:
b s i(z,t)—i(z+Az,t)= GAzv(z+ Az t)+ CAz2AZR2D (1)
model N B 8/’(2, t)
Lumpad: v(z,t)—v(z+ Az, t) = RAzi(z, t) + LAZ=5~. (2)
element
model

st m Dividing by Az and taking the limit as Az — 0, the
- following differential equations are obtained

Traveling waves

Telegrapher equations

Lossless

Terminated T-line

Special cases

Lossy

Terminated T-line 8[-(2’ t) _ B B aV(Z’ t)
9 Gv(z,t)-C = (3)

av(z,1) , di(z, 1)
Appendix oz = _RI(Z, t) —L ot (4)
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Telegrapher equations - time domain

Oliver Heaviside

m They come from Oliver
Heaviside who
developed the
transmission line model.

m They are a pair of
coupled, linear
differential equations.

m They describe the

Bom taMay to80 voltage and current on an
Camden Town, Middlesex, . . .
Englang electrical transmission
Died 3 February 1925 (aged 74) . . .
Torquay, Cavon, England line with distance and
Nationality British .
Fields Electrical engineering, tl me.

mathematics and physics
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Telegrapher equations - phasor domain

m In the case of sinusoidal steady-state conditions, the
voltage and current take the form of phasors:

Introduction V(Z7 t) - §R{V(Z)e/wz‘} (5)
i(z,1) = R{I(z)e"") (6)

Lumped-
element
model

o m Hence, the telegrapher equations can be written as:

equations

ERSLab

F. Nunziata

UEE]
propagation

Traveling waves

Telegrapher equations - phasor domain

Lossless

Terminated T-line

Special cases dV(Z)

gz~ AHDIE) )
i Chart dl ,

e 2) — (G +iwoV(2) ©
Developing the Smith dz

Appendix Note the similarity with Maxwell’s equations!
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Wave equations for T-lines

ERSLab Telegrapher equations can be decoupled by solving them

F. Nunziata simultaneously to give wave equations for V(z) and /(z).
Introduction
Wave equations - Telephonists’ equations
Lumped-
element
model
—— PV(z)
w -7°V(z) = 0 (9)
prz‘;/)Zgation d22 ( )
Traveling waves d2 I V4
Lossless A = 721(2) =0 (10)

Terminated T-line dz2

Special cases

Lossy
Terminated T-line

with ~ being the frequency-dependent propagation constant:

y=a+jB=+/(R+jwl)(G+ jwC) (11)

18/80
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Traveling wave solution

m To solve wave equations, one can start from either (9)
or (10) to obtain V(z) or I(z), respectively. Then, the

remaining variable (/(z) or V(z)) can be obtained using

(12)

(7).
m Solving the wave equation in the V/(z) variable (9), one
obtains:
V(z) = Vte 7?4 Ve
where:

m V*and V~ are two complex constants to be
determined imposing boundary conditions;

m ¢ 7%, e"% stand for waves traveling in the positive
(progressive wave), negative (regressive wave) z
direction, respectively.
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Traveling wave solution

ERSLab The real part of the propagation constant

F. Nunziata

The real part « of the propagation constant describes the
Introduction attenuation of the signal due to resistive losses.

Lumped-element
model

Lumped-
element
model

ey The imaginary part 8 of the propagation constant describes
Wave the propagation properties of the signal as in lossless lines.

propagation

Traveling waves

The imaginary part of the propagation constant

Lossless
Terminated T-line
Special cases

- Substituting v = « + j3 in (12) one can note that: the
IR exponential term including « only affects magnitude of the
Smith Ghart voltage phasor; the exponential term including 3 affects only

Introduction

il the phase of the waves in space.

n a nutshell

Appendix
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Traveling wave solution

m To obtain the /(z) wave, the V(z) solution (see eq.(12)),
must be inserted into eq.(7):

Introduction

Lumped-element
del

1 dV(2)
(z) = ———
Lumpod (2) Rijul dz
model Y 4~z _ Z
Telegrapher - - g V e 7L V e’Y 13
equations R +ij ( ) ( )
Wave
propagation

Traveling waves

Lossless u The rat|0:

e el Al
Z,= —RT_ J O (14)
L‘rc:r?nsm);ted Tline Y G + _IW C

has the physical dimension of an impedance and it is termed
as characteristic impedance.

Appendix
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Traveling wave solution

V(2)
I(z)

as:

Traveling wave solution

Using (13)-(14), the traveling wave solution can be written

Vte % 4 V= g¥?

(Vas

Z,

e_’Yz _

Zo

- e’YZ
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A common mistake!

Z, does not depend on the length of T-line

Note that Z, depends only on the characteristics of the
conductors, the dielectric medium and the cross-section
geometry of the T-line.

Z, cannot be replaced by a lumped impedance in an
equivalent circuit

24/80



Traveling wave solution - time domain

The time-domain solution can be obtained as follows:

v(z,t) =R (V(z)e™") = |V*|cos (wt— Bz +¢T)e % +

Introduction

-l _ _ z
st |V-|cos (wt+ Bz + ¢~ ) e (17)
Lumped-
element
model
Telegrapher
equations
W. N0/ i

ave —
e saton /\ m o =0,ie. lossless
Traveling waves \/ v case.
Lossless .
m The wavelength is:
SRR for a fixed value of 2 \ = 2m
Lossy B

Terminated T-ine m The phase VeIOCity

-« T
srin oer % AWA is: vy =% = M.

Developing the Smith
chart

Appendix
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The lossless T-line

ERSLab

F. Nunziata In many practical cases the loss of the line is so small that
can be neglected.

Introduction
Lumped- Lossless T-line:
element
del A g 0
i m The propagation constant (11) becomes an imaginary
Wave number v = a + jB = j5 = jwV LC.
i m The characteristic impedance (14) becomes a real
— number: Z, = /-
Special cases Th I h ) 271- 27r
Lossy m The wavelength is: A = B = S
Smith Chart m The phase velocity is: v; = % = \/;Tc

Introduction

Developing the Smith
chart

Appendix
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Terminated T-line

The properties of a T-line terminated in an arbitrary load
impedance Z; are examined

Introduction

Lumped-element

model
Lumped-
element +
Z, V*+ | A
model
Telegrapher
equations

Wave
propagation I 1
Traveling waves I

Lossless
Terminated T-line
Special cases

BCs

Lossy

M This analysis illustrates how positive and negative traveling
Inaccton waves combine to satisfy the boundary conditions at a
termination.

Appendix
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Terminated T-line

Traveling wave solution for a lossless T-line

V(z) = Vte P24 v—eb? (18)
Vo V- .
— Bz _ T 4Bz

I(2) Z.® Zoe/ (19)

BCs

V(z) and /(z) are the solutions of the 2nd order wave
equation; hence, two arbitrary constants V* and V— must
be specified imposing BCs related to load and generator.

V* and V™ represent the amplitudes of steady-state voltage
waves, traveling in the positive and in the negative direction,

respectively. 29/80



Coordinate reference system

A new reference system centered into the load

BN A reference system such that the zero reference is at the
Introduction location of the load (instead of the generator) is more
convenient, since T-line analysis starts from the load itself.
Lumped-
element

model V(Z)’ I(Z)

Telegrapher
equations

Wave ZO’B V|_

propagation

Lossless -

Terminated T-ine | Z

Special cases / 0

Lossy

Terminated T-line

Smith Chart Note that the positive direction of the space coordinate is
Introduction s .

reversed: it increases when moving from load to generator

chart

along the T-line.

Appendix
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BC imposed by the load - Reflection coefficient

m A new coordinate / = —z is adopted; hence,
substituting in (18) and considering the load coordinate,

ERSLab

F. Nunziata
—_ i.e. =0, (18) becomes:
ntroduction
Llumped— V(O) = V+ + V_ (20)
element 1
model . s + _
i oy = o (Vr-v7) (21)

Wave
propagation
Traveling waves
Terminated T-line
Special cases

The BC imposed by the load, whose impedance is Z, is:

Lossy

Terminated T-line

Smith Chart V(0) = Z.1(0) (22)

Introduct

Developing the Smith
chart

Appendix
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Introduction

Lumped-element
model

ey m Solving for V~ gives:

model

auatons Reflection coefficient

Wave
propagation

Traveling waves Vﬁ ZL - ZO
Lossless r =

Terminated T-line V+ o ZL + Zo

Special cases

(24)

Lossy

Terminated T-line

— Note that both the direct (—z) and the reflected (+z) waves
inctcion are needed to satisfy BCs.

Developing the Smith
chart

Appendix
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Reflection coefficient

Using (20-21) and considering the reflection coefficient (24),
one can write the V and / waves at the load (z = 0) as

follows:

° VO)=Vt+V = VE(14T)
Lumped-
;Izr;;nt ZO/(O) — V+ — V_ — V+ (1 - r) (25)
Vo) _
\;:\:opagation m Since 1(0) ) ZL’
LI m defining Z, = ZL) as the normalized load impedance:
S 14T
Special cases Z = — 26
Lossy ‘ 1 B r ( )
IR Note also that (26) can be solved for I to obtain:
Smith Chart =
I[:;’:::;ngthesnmh r = ZL _ ZO - ZL — 1 (27)

Zi+2Z, Z +1

Appendix
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Standing waves

V(z) and /(z) waves (18-19) can be written in terms of I':

Traveling wave solution - standing waves

V(iz) = v+ (e*fﬂ2+refﬂ2) (28)
I(z) = ;(e—fﬁz—reiﬂZ) (29)

Standing waves: The voltage and current waves consist of

the superposition of an incident and reflected wave.
A special case occurs under the matched load condition:
F=0,ie. Z, = Z,. No reflected wave!
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A constant average power flow applies

P

m Using (28), the time-average power flow along T-line
can be evaluated:

1 .

TRV (2)

1 ‘V+’2 * n—2fZ 2jBz 2
3z &e<1—r g2z | 1Pz || )
1|VHP 2
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A constant average power flow applies

Introduction

Lumped-element
model

Lumped-
element
model

Telegrapher
equations

- Total power delivered to the load

Traveling waves

Lossless

Terminated Fine It is equal to the incident power ('V ' ) minus the reflected

Special cases
Akl
Lassy) power (%).

Terminated T-line

Smith Chart

Introduction

m|[|=0(|l| =1)implies maximum (no) power is
delivered to the load.

Appendix
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Return loss

ERSLab Return loss - RL (dB)

= Nunziata In telecommunications, return loss is the loss of power in
Introduction the signal returned/reflected by a discontinuity in a T-line.

Lumped-element
del

Lumped-

element RL = —20|og|r\ (dB) (31)

model

Telegrapher

equations

Wave m Matched load: RL=co dB - no reflected power.

propagation

m Total reflection: RL=0 dB - all incident power is
Lossless reflected.

Terminated T-line

Spodl ases m AL = —10dB: 1/10" of the energy is reflected. Usually
Lossy

Torminated i this is the threshold when most devices are considered
Smith Chart to be tuned.
Introdu

m RL = —20dB: 1/100" of the energy is reflected. This is
a very good matching.

Appendix
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The magnitude of the standing wave

The magnitude of the standing wave depends on the load.

Introduction
Lumped-element . .

model ‘ V(Z)’ — ‘ V+ <e_lﬁz + relﬁz)
Lumped-

element

model — |V+| ‘1 + rezjﬁz

Telegrapher
equations

Wave
propagation

V| |1+ e

Lossless = ’V+| ‘1 + ‘r’e/(‘g*zﬂ/)‘

Terminated T-line
Special cases

Lossy
Terminated T-line

St m where | = —Zz has been considered and the reflection
iocucton coefficient is expressed in polar format I' = |I'|e/.

Developing the Smith
chart

Appendix
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The magnitude of the standing wave

The magnitude is constant (flat line) when I = 0; otherwise,

it oscillates with position z along the line.

——Matched load
——Mismatched
———Short circuit

m Matched load:

V()] = |VT|

m Mismatch - max:
ef—28! _ 1
Vimax =
[VEI(1+IT)

m Mismatch - min:
gf—28l — _4

Vmin = |V+|(1 _|r‘)
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Do it yourself

m Let’s try with different Z; to simulate: matched
(ZL = Zb), short circuit (Z, = 0) and partially matched
(Z # Zo) loads.

Introduction

Lumped-element

model £ _ 1*10,\9;

Lumped- — AQ .
element c = 3%x1078;

model L = 100; $%number of points

Telegrapher
equations vVmax =1 ;
Wave : 7.0 = 50 ;
propagation

I —— lambda = c/f;

Lossless beta = 2xpi/lambda;
Terminated T-line gamma — ( ZL _ Z O ) / ( ZL + Z O ) ;

Special cases

Lossy teta = angle (gamma) ;
TS z = linspace(-2xlambda,0,L);
Smith Chart \Y = Vmax*sqgrt (1+abs (gamma”2) +2+abs (gamma) . . .

Introduction

el St cos (2+«beta.xzt+teta));

chart

Appendix
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Standing wave

It is clear that | V| oscillates back and forth between
maximum and minimum values.

Maxima

m The voltage maxima occur when there is constructive
interference between the incident and reflected waves
m The pattern of maxima repeats with a period given by:

28l =21 — d = 3.

Minima

m The voltage minima occur when there is destructive

interference between the incident and reflected waves.

m The pattern of minima repeats with a period given by:
2pl=2r —d=3.
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Standing wave

The voltage standing wave pattern provides immediate info
on the T-line circuit

m Z > Z,: starts
with a maximum at
load;

m Z < Z,: starts with
a minimum at load;

| %(ZL) >0
(inductive): initially
increases;

| S(ZL) <0
(capacitive):
initially decreases.
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Do it yourself

ZL 100;
[V,ROS,gamma, z] = standingw (L, 2L, Z0,Vp, lambda) ;
figure(l), plot(z,V,’'b’,’LineWidth’,2.5), grid on;

ZL = 25;
[V,ROS,gamma, z] = standingw(L, %L, Z0,Vp, lambda) ;
plot(z,V,’r’,’"LineWidth’,2.5)

ZL = complex(50,10);
[V,ROS,gamma, z] = standingw (L, ZL,Z0,Vp, lambda) ;
plot(z,V,’g’,’LineWidth’,2.5)

ZL = complex(50,-10);

[V,ROS, gamma, z] standingw (L, ZL, ZO, Vp, lambda) ;
plot(z,V,’m’,’LineWidth’,2.5)
legend(’Z_L>Z_o',’'Z2_L<Z_o',’Im{Z_L}>0","Im{Z_L}<0")
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Standing Wave Ratio (SWR)

EREL SWR (a.k.a. Voltage SWR (VSWR) or in Italian “Rapporto
F Nunziata d’onda stazionaria (ROS)”)

Introduction

Lumped st It is a real number that measures the impedance matching

Lumped- of loads to the characteristic impedance of a T-line.
element

model SWR is defined as the ratio of the partial standing wave’s
Wave amplitude at an antinode (maximum) to the amplitude at a
propagation node (minimum) along the line.

Traveling waves

Lossless

Terminated T-line

SWR

Special cases

Lossy
Terminated T-line

Smith Chart SWR = Vinax _ 1+ 1T m|[|[=0 — SWR=A1

Vmin - 1=Wp WIN=1 - SWR=oo

Appendix
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Input impedance

I, defined as the reflected-to-incident wave ratio measured
at the load (24), can be easily defined at any point, i.e.,
z = —/ on the T-line:
V-e 8l v-
F() = rgs = vie Al =
Hence, the normalized impedance seen looking toward the
load at z = —1I:

=re (33)

Zoo—Zn_V _ V+telhlpy—eibl
n - — z, = 1Zo, = V+teBl_V—e-iBl
4Tl 14Te—2s!
T 1-1() — 1-re~2#AI (34)

Replacing I with (27) and considering that
et = cospl + jsingl:
- Zin 21+ jZotansl
7 — &in _ 2L T 2ot Pl
"N Zy  Zo+ jZitangl (35)
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BC imposed by the generator end

The BC condition at the generator end can be obtained
using (35) to evaluate the input impedance seen looking

Inttoduction towards the load at the the generator end

Lumped- .

element [} Vg is the

model I . .

T in open-circuit

Wave voltage;

propagation . .

- m Z;is the internal
Lossless impedance of the
Terminated T-line Z

T in generator.

L

o ine m The total voltage V
Smith Chart . atz=-lis given

Introduction

Developing the Smith
chart

Appendix

by V = VGZ -
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BC imposed by the generator end

Ves5——=5-

Z/n ZG

m Vs given by the sum of the progressive and reflected
waves; hence:

Zn__ _ yreldl (1+re7%)

This expression can be solved for V+ :

BC imposed by the generator

vVt =

Zin(ZL + Zo) Ve

2(Zin + Zg)(Zcospl + jZ,singl)

(36)

(37)
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Special cases of lossless terminated lines

A number of special cases of lossless terminated T-lines
frequently apply in practical cases.

Introduction

Lumped-element
model

Lumped- V(z), I(z)
element -_——
model

Telegrapher

equations Zo’ B VL
Wave

propagation _———

Traveling waves

o+

Lossless [
Terminated T-line
Special cases

Lossy

e Now let us look at Zj, for some “special” load impedance
Smith Chart .
itcucion and T-line lengths.

Developing the Smith
chart

Appendix
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T-line with special length

1. T-line electrically small. This means that the T-line is

much smaller than \: | <« \:

Bl = 27r)l\ ~0 (38)

m This implies that, according to eq.(35), tan 8/ = 0 and,
hence, Z, = Z;

Circuit theory approximation

If the T-line length is much smaller than the wavelength, the
input impedance Z;, will always be equal to the load
impedance Z;. Hence, voltage and current do not vary
appreciably over the elements that can be approximated as
lumped elements.
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T-line with special length

_pA
2. I=n3

Zin| 1= A Z 39
Introduction n - 5 — 4L ( )
Lumped- This is an ideal one-to-one impedance transformer that
g does not alter the load impedance, independently of Z,.
Wave 3/:%—’-”%
propagation o
Traveling waves )\ ) ZO
Lossless Zin l=—) == (40)
Terminated T-line ( 4 ZL
Special cases
Lossy This T-line is also termed as quarter-wave transformer since
Terminated T-line . . . . . . .
Somith Ghart it is equivalent to invert Z; depending on the characteristic
Introdciion impedance.

Developing the Smith
chart

Appendix
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T-line terminated in a short circuit

4. Z; = 0. The T-line is terminated in a short circuit:

Introduction
Lumped-element
model
V(2), 1(2) N
Lumped- —_———
element
model

Z B — -
o V, =0 Z,=0
Wave
propagation
Traveling waves

Lossless |
Terminated T-line Z

1
Special cases. [ 0

Lossy

Terminated T-line

Smith Chart
Introduction

Developing the Smith
chart
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T-line terminated in a short circuit

m According to eq.(27): I = —1.
m According to eq.(28):

ERSLab

F. Nunziata
noducion V(z) = v* (e —e%) = —2jV*sinpz (41)
model V+ ' ‘ 2 V+
Lumped- _ —jBz Bz\ __
elemen I(z = — (e + e = ——cosf3z (42
rr:odel : ( ) ZO ( ) ZO B ( )

m According to eq.(35): Zj, = jZ, tan S1.
W;
pri\;;zgation

Traveling waves

Reactive impedance

Lossless

The input impedance is purely imaginary for any length /
vy (reactive impedance) and can take all the values between
Terminated Tine +joo and —joo. Note that, when /| =0 Z;, = 0, i.e.; SC;
Smith Chart while, when | = 4 Zj, = oo, i.e.; OC. In addition, Zj, is

Z)he;"et\opw\g the Smith pel’iod iC (%) in /

Appendix
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T-line terminated in a short circuit

ERSLab

F. Nunziata

Introduction

Lumped-element
model

in'“o

Lumped-
element
model

Telegrapher
equations

V(z)/(2]V+);I(Z)ZO/(2V+);X. 74

Wave
propagation

Traveling waves

Lossless

Terminated T-line _é _ 0

Special cases 2 4

Lossy

Terminated T-line Reactance

Smith Chart . q q g

Invoducon The input reactance can be either inductive (when X > 0) or
Developing the Smith ang .

ohan capacitive (when X < 0). Hence, a proper choice of / can make
Appendix the SC T-line equivalent to a capacitor or an inductor.
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T-line terminated in an open circuit

5. Z; = oco. The T-line is terminated in an open circuit:

Introduction

Lumped-element
model

Lumped- —_——— V(Z), I(Z) |-\|L=0

model

Telegrapher —
= Z,,B V, Z =
Wave

propagation |-

Traveling waves

Lossless |
Terminated T-line

| Z
Special cases [

0
Lossy

Terminated T-line

Smith Chart
Introduction

Developing the Smith
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T-line terminated in an open circuit

m According to eq.(27): T =

m According to eq.(28

ERSLab

F. Nunziata

):
):
Introduction V(Z) = (e_lﬁz e’ﬁz> = 2V+ Ccos BZ (43)

imped-element
model

Lumped- / _

element (Z ) -

model
Telegrapher
equations

m s

_ —2jVt |
jBz _ qiBz\ _
( e ) =z sin 3z (44)

» m According to eq.(35): Zj, = —jZ, cot S1.
propagation

Reactive impedance

Lossless

The input impedance is purely imaginary for any length /
vy (reactive impedance) and can take all the values between
Torminated Tno —joo and +joo. Note that, when / = 0 Z, = o, i.e.; OC;
Wbl While, when | = 3 Zj, = 0, i.e.; SC. In addition, Zj, is

Z)he;"et\opw\g the Smith pel’iod iC (%) in /

Appendix
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T-line terminated in an open circuit

ERSLab

F. Nunziata

Introduction

Lumped-element
model

in'“o

Lumped-
element
model

Telegrapher
equations

V(z)/(2V+);I(Z)ZOI(Z]V+);X. 74

Wave
propagation

Traveling waves

Lossless
Terminated T-line
Special cases

Lossy

Terminated T-line

Reactance
Smith Chart

Invoducon The input reactance can be either inductive (when X > 0) or
Developing the Smith

o capacitive (when X < 0). Hence, a proper choice of / can make

Appendix the OC T-line equivalent to a capacitor or an inductor. _ N



Junction of two T-lines

Introduction

Lumped-element
model

Lumped-
element
model

Telegrapher
equations

Wave
propagation

A T-line of characteristic impedance Z, feeds a T-line whose
lossiEz characteristic impedance is Z;. The latter T-line is assumed

Terminated T-line

Spcis cases to be infinitely long or terminated in a load Z; = Z;, i.e.; no
Lossy

o reflected wave occurs from its far end.
Smith Chart

Introduction

Developing the Smith
chart

Appendix
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Junction of two T-lines - Insertion loss

m The reflection coefficient at z = 0 is given by:

N Z1 - Zo
F. Nunziata r — 45
Introduction Z1 - Zo ( )
m Hence, the voltage for z < 0 is given by:
e V(z) = v+ (e*fﬁz + reﬂ”) . z<0  (46)
model

Telegrapher
equations

m Part of the incident wave is transmitted onto the second
Wave T-line with a voltage amplitude weighted by the

propagation . . a
transmission coefficient T

Lossless

V(z) = VT Te /52, z>0 (47)
Special cases
Lossy m Equating the above equations at z = 0 one obtains T:
Terminated T-line

; 2Z
Smith Chart 1
Introduct T =1 + [ = 48
Dev:\opmg the Smith Z1 + Zo ( )

|T|indB, i.e.; —20/og|T|, is termed as: Insertion:loss:

Appendix
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Lossy T-line

Actual T-lines have losses due to finite conductivity and/or
lossy dielectric.
However, those losses are small.

m All the above equations hold except that j3 must be
replaced with a + j§.

Low-loss T-line, i.e. R < wL and G < wC

m Z, can be still considered real, i.e. Z, ~ \/%;
B« #0;
mS~wVLC.
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Reflection coefficient

a does not have any effect on I' at the load position, i.e.
z=0

a # 0 does affect I'(/)

r(l) =re 2g-2F (49)

For increasing /, I'(/) decreases exponentially and it
essentially vanishes for large /.
Any load appears matched to the T-line when viewed
through a long section of lossy line
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Input impedance

Input impedance for a lossy line

1+ Mg 2bl—2a!
%1 _ Te—2jBl-2al
Z, + Zotanh(jBl + al)
°Z, + Ztanh(jgl + al)
Z

Zin:

Q

m The last simplification holds for large /, since tanh
approaches 1.

m Note also that SWR approaches 1 as one moves away

from the load toward the generator.
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What it is

Nomogram

It is a graphical calculation device, aka nomogram,
proposed by P.H. Smith in 1939 to solve transmission line
problems quickly and with enough accuracy.

Smith Chart

Nomography stands for the graphical representation of a
mathematical relationship or law. Smith Chart provides a
quick and effective way to visualize T-line phenomenon
without the need of detailed numerical calculations.

https://www.microwavesl0l.com/smith-chart/smith-chart-tool-vl

66/80



Outline

Introduction

Lumped-element
model

Lumped-
element
model
Telegrapher
equations
Wave
propagation
Traveling waves

Lossless
Terminated T-line
Special cases

Lossy

Terminated T-ine E Smlth Chart
Smith Cl

Introduction

Developing the Smith

chan m Developing the Smith chart

Appendix

67/80



Unit circle

It is based on a polar plot of the reflection coefficient I'.

Introduction

Lumped-element
model

The magnitude || is plotted
as a |l < 1 radius from the
center of the chart and the
angle -7 <0 <mis
measured counterclockwise
from the right-hand side of
the horizontal diameter

Lumped-
element
model
Telegrapher
equations
Wave
propagation

Traveling waves

Lossless

Terminated T-line

Special cases

Lossy

Terminated T-line

Somith Ghart The real benefit of the Smith chart consists of representing
inroducion any normalized impedance (admittance) using the circles

Developing the Smith .
I printed on the chart.
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Constant resistance/reactance loci

At the very root the Smith chart can be considered as the
graphical way to represent eq.(27):

Introduction r ZL - Zo

Lumped-element =

mcd:l Z/ + ZO

Lumped- L L

clement This is a bi-linear transformation that maps every
impedance into the complex I plane.

equations

W; . . . . .

propagation m The first step is to deal with normalized impedance:
Traveling waves

Lossless Z— i ZL

Terminated T-ine L — ?

Special cases o

Lossy

Terminated T-line

SlnToitt:cnon = i 1+r 1+rr—1—jr,
ZL_r+jX_1—r_1—Fr—jr,-

m Then, eq.(27) can be written as:

(51)

Developing the Smith
chart

Appendix
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Constant resistance/reactance loci

m Arranging eq.(51) to single out r and x one obtains:

: 11—
Introduction
r=——— 52
t:gg:led—e\emem 1 _ 2rr + |I_|2 ( )
Lumped-
element and
model 2rl
Sk X=——— (53)
_ 2
Wave 1-2r, + I
propagation . .
These two equations can be rearranged according to a
tossiess parametric equation:
Special cases
Lossy (x—a)’+(y - b)* = R
Terminated T-line
Smith Chart . .
o that represents a circle in the complex I plane.

Developing the Smith
chart

Appendix
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Constant resistance circles

plane are transformed according to the bi-linear
transformation into constant resistance circles.

x Re (I')

Constant resistance contours in the normalized impedance
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Constant reactance circles

Constant reactance contours in the normalized impedance
plane are transformed according to the bi-linear
Introduction transformation into constant reactance circles.
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s S Center: (T, =1,I;=1); Radius: ;.
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Smith Chart: scales along the perimeter

Angular scale

ERSLab

F. Nunziata It indicates the angle 6 of the reflection coefficient (in degrees).

Introduction

Lumped-element
model

Lumped- It indicates electrical lengths in fraction of wavelength in the range

element

Rt (0 — 0.5)) and includes a twofold labeling:

Telegrapher
equations

Wavelength scale

- the outer scale is calibrated clockwise and stands for
- wavelengths toward the generator;

Traveling waves . . . .
Lossl;s - the inner scale is calibrated counter-clockwise and stands for
Torminated Tino wavelengths toward the load.

Special cases

Lossy

e The two labeling are complementary, i.e.; 0.1\ on the outer scale
Smith Ghart stands for 0.5 — 0.1 = 0.4\ on the inner scale.

Introduction

Developing the Smith
chart

Those scales allow plotting ' and determining the length of the
t-line,
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Smith Chart regions

Pure inductance
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|Positive reactances:Z=R +jX|
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element

model

Telegrapher
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propagation
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Pure resistances: Z=R+j0

Lossless
Terminated T-line
Special cases
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| Negative reactances: Z=R—jX ‘
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Smith Chart regions

A number of regions can be identified:

The upper half part above the horizontal axis includes all
impedances with a positive reactive part (i.e., inductive
impedances).

The lower half part includes all impedances with a negative
reactive part (i.e., capacitive impedances).

The horizontal axis includes all pure resistances.

The outer perimeter includes all purely reactive impedances
(i.e., zero resistance): pure inductances/capacitance on the
upper/lower semicircle.

The rightmost point on the horizontal axis stands for an
infinite impedance (a perfect open circuit).

The leftmost point on the horizontal axis represents zero

impedance (a perfect short circuit).
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Smith Chart VSWR regions

Constant VSWR circles

Circles of various radii on the Smith Chart, with centers at
the origin, represent a constant SWR, which is equivalent to
a constant magnitude of reflection coefficient

Any point on one of these circles, therefore, represents a
point on a lossless transmission line at some distance from
the load, since, as we travel away from the load on a
lossless line, the reflection coefficient magnitude remains
constant but the angle of the reflection coefficient changes.
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