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Introduction

Electromagnetic (EM) theory forms a chapter of
mathematical physics which can be organized as an

axiomatic theory.
All the fundamental concepts, as well as many notions of

technical interest, can be deduced from a small set of
postulates.

Generally speaking, each theory consists of three key
steps:

1 Set of entities aimed at describing the phenomena of
interest.

2 Set of mathematical equations aimed at describing the
evolution of the entities.

3 Relationship between the equations and the physics.
3 / 68
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EM theory

EM theory can be regarded as the study of fields; i.e. vector
functions whose magnitude and direction vary as function of
their position in space, produced by electric charges at rest

or in motion:

Static vs dynamic

Electrostatic fields are usually produced by static
electric charges.
Magnetostatic fields are due to the motion of electric
charges with uniform velocity (direct current).
Time varying fields are usually due to accelerated
charges or time-varying currents.
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Entities

All the entities, in general, depend of both space r and time
t and, in the MKSΩ or Giorgi system of units, they are given

by:

e(r, t) ( V
m ) electric field;

h(r, t) ( A
m ) magnetic field;

d(r, t) ( C
m2 ) electric induction;

b(r, t) (Wb
m2 ) or (T ) magnetic induction;

ρ(r, t) ( C
m3 ) electric charge density;

j(r, t) ( A
m2 ) current density;

Macroscopic laws

The theory to be presented here deals only with macroscopic
scale phenomena; i.e. those phenomena where consequences of

the discrete nature of the electric charge are irrelevant. 6 / 68
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Key founding fathers
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Faraday’s law of em induction

It links e(r, t) and b(r, t) through an integral relationship
between the flux of b and the circulation of e∮

C

e(r, t) · ĉ dC = − d
dt

∫∫
S

b(r, t) · n̂ dS (1)

Physical meaning

The circulation of the electric field intensity around any
closed path C equals the time-rate change of the flux of the

magnetic induction through a surface that has C at the
edge.

9 / 68



ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’s
equations in
differential
form
Maxwell’s equations

Boundary
conditions

The wave
equation

Potentials

Time-
harmonic
regime
Dynamic fields

Comments

Maxwell-Ampère law

It links h(r, t), j(r, t) and the displacement current density
∂d(r,t)
∂t ( A

m2 ). Note that, at the very root, the displacement
current was the fundamental Maxwell’s contribute.∮

C

h(r, t) · ĉ dC =

∫∫
S

(
∂d(r, t)
∂t

+ j(r, t)
)
· n̂ dS (2)

Physical meaning

The circulation of the magnetic field intensity around any
closed path C equals the flux of the electric current density
through a surface that has C at the edge plus the time-rate
change of the flux of the electric induction through a surface

that has C at the edge.
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Gauss’ laws

Gauss’ law for electric induction:

©
∫∫

S

d(r, t) · n̂ dS =

∫∫∫
τ

ρ(r, t)dτ (3)

Gauss’ law for magnetic induction:

©
∫∫

S

b(r, t) · n̂ dS = 0 (4)

Physical meanings

The flux of the electric induction through any closed surface
equals the net charge inside the volume enclosed by the surface.
The flux of the magnetic induction through any closed surface is

zero.
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Remarks on flux and circulation

The flux is defined as the rate of flow of an entity per unit
area

Flux of a vector field
represents how much of the
field is going through a given
surface. It is usually defined

with respect to a given
surface and depends on how

much the field is
perpendicular to the surface.

If a field has a circulation along a given path, that means the
field will have net flow that adds together along the given

path.
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Relationship with physics

The link between em and mechanics is given by the Lorentz
force equation

f = q(e + v× b) (5)

where f (N/m) is the force experienced by a particle with
charge q moving at velocity v (m/s) in an em field.

Comments

It can be considered as a “definition” of the electric field
intensity and the magnetic induction.

14 / 68
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Maxwell’s equations in integral form

In summary, the following four equations are referred to as
Maxwell’s equations in integral form.

∮
C

e(r, t) · ĉ dC = − d
dt

∫∫
S

b(r, t) · n̂ dS (6)

∮
C

h(r, t) · ĉ dC =

∫∫
S

(
∂d(r, t)
∂t

+ j(r, t)
)
· n̂ dS (7)

©
∫∫

S

d(r, t) · n̂ dS =

∫∫∫
τ

ρ(r, t)dτ (8)

©
∫∫

S

b(r, t) · n̂ dS = 0 (9)
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Divergence equations

The Maxwell’s equations in integral form can be rewritten in
a “local” form using Stokes and Gauss theorems, under the
hypothesis that scalar and vector fields are regular, i.e. they
are continuous to all the orders implied in the calculations.

Using Gauss theorem, eq.(3)-(4) can be written a follows:

∇ · d(r, t) = ρ(r, t) (10)

∇ · b(r, t) = 0 (11)

Magnetic charges

Note that b is a solenoidal vector; hence, no free magnetic
charges exist.

17 / 68
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Curl equation

Invoking Stokes theorem, eq.(1)-(2) can be written as
follows:

∇× e(r, t) = −∂b(r, t)
∂t

(12)

∇× h(r, t) =
∂d(r, t)
∂t

+ j(r, t) (13)

18 / 68
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Maxwell’s equations

In summary, Maxwell’s equations in differential or local form
are given by:

∇× e(r, t) = −∂b(r, t)
∂t

∇× h(r, t) =
∂d(r, t)
∂t

+ j(r, t) + jo(r, t)

∇ · d(r, t) = ρ(r, t)
∇ · b(r, t) = 0

They are first-order
coupled differential

equations relating the
vector field quantities to

each other.

Note that the total current j is partitioned into the sum of
a convection (or conduction current) j plus an imposed
current jo. The latter is a source term.
The term em field refers to a pair of vector functions e,
h that satisfy Maxwell’s equations.
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Remarks on imposed currents

Known terms

We consider “known terms” the physical quantities whose
distributions can either “guessed” or experimentally
determined easily.

Usually, electric current density satisfies this requirement
since it is defined within a region in the space that includes

the “sources”
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Constitutive relationships

To solve Maxwell’s equations, the medium must be
accounted for. This can be done by introducing 3 equations

termed as constitutive relationships.

For a simple medium, i.e. linear, homogeneous, isotropic and
time-invariant, they are given by:

d(r, t) = εe(r, t) (14)
b(r, t) = µh(r, t) (15)
j(r, t) = σe(r, t) (16)

where ε is the electric permittivity (F/m), µ is the magnetic
permeability (H/m) and σ is the conductivity (S/m). Note that for

a simple medium ε, µ, σ are constants.
21 / 68
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Vacuum

The simplest medium, i.e. the vacuum, is characterized by
the following constitutive relationships:

d(r, t) = εoe(r, t) (17)
b(r, t) = µoh(r, t) (18)
j(r, t) = σe(r, t) = 0 (19)

where:
εo ≈ 8.85× 10−12 is called vacuum permittivity,
permittivity of free space or electric constant.
µo ≈ 1.25× 10−6 is called the vacuum permeability,
permeability of free space, or magnetic constant.

Free space

Free space is a good approximation of vacuum.

22 / 68
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Classification of media

The medium where the field exists is characterized by its
constitutive parameters: ε, µ and σ.

The medium is said to be:

linear: ε, µ and σ are independent of e and h;
homogeneous: ε, µ and σ are not function of space
variables;
time-invariant: ε, µ and σ are not function of time
variables;
isotropic: ε, µ and σ are independent of direction (they
are scalar quantities).
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Boundary conditions

Maxwell’s equations in the differential form are valid at any
point in a continuous medium.

They cannot be applied to discontinuous fields that may
occur at interfaces between different media.
Maxwell’s equations in integral form can be applied to
find the relations between the fields on the two sides of
an interface.
Such relations are known as Boundary Conditions
(BCs) or continuity conditions.
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Boundary conditions

Free space

An infinitely large (unbounded) homogeneous medium,
characterized by constant ε and µ, is often referred to as

free space.
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Boundary conditions

At the interface separating two different media the field
satisfies the following BCs:

Medium 1: ε1, µ1,
σ1.
Medium 2: ε2, µ2,
σ2.

(e1 − e2)× n̂12 = 0 (20)
(h1 − h2)× n̂12 = js (21)

(d1 − d2) · n̂12 = ρs (22)
(b1 − b2) · n̂12 = 0 (23)

where js ( A
m ) and ρs ( C

m2 ) are surface currents and surface
free charges, respectively.

26 / 68
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Maxwell’s equations in simple media

Maxwell’s equations in simple media can be rewritten as
follows

∇× e(r, t) = −µ∂h(r, t)
∂t

∇× h(r, t) = ε
∂e(r, t)
∂t

+ σe(r, t) + jo(r, t)

∇ · e(r, t) =
ρ(r, t)
ε

∇ · h(r, t) = 0

Notation

Note that hereinafter, to simplify the notation, the time and space
dependence of scalar and vector field functions is omitted.

27 / 68
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The wave equation

Maxwell’s equations are solved in a simple medium and a
source-free solution region is considered, i.e. jo = 0, ρ = 0.

Moreover, the medium is considered to be an ideal
dielectric, i.e. σ = 0.

Since Maxwell’s equations are coupled, to decouple
them a second-order differential equation is obtained:

∇×∇× e = −µ ∂
∂t

(∇× h) = −µε∂
2e
∂t2

Using the vector identity: ∇×∇× c = ∇∇ · c−∇2c:

∇∇ · e−∇2e = −µε∂
2e
∂t2

Since ρ = 0, ∇ · e = 0, hence:

∇2e− µε∂
2e
∂t2 = 0 (24)
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The wave equation

Eq.(24) is the time-dependent vector wave equation (aka
D’Alembert’s vector equation). It is a second-order partial
differential equation (PDE) which contains the e field only.

Analogously, one can obtain the wave equation for the
h field:

∇2h− µε∂
2h
∂t2 = 0 (25)

Solutions of D’Alembert’s equation

Note that the solutions of D’Alembert’s equation are referred
to as waves or wave functions and they can have quite

different physical dimensions and meanings.
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The wave equation

It must be explicitly pointed out that, since Maxwell’s
equations are first-order PDEs, only a linear
combination of the solutions of the wave equation (2nd
order differential equation) will be solution for the
Maxwell’s equations.
Spurious solutions are filtered out using divergence
equations (10-11).
Em wave is often taken as synonymous with em field, in
the fast time-varying regime. However, it must be
explicitly pointed out that wave equation can be derived
from Maxwell’s equations under certain assumptions.
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Wave functions
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Electromagnetic waves

Eq.(24) is satisfied by any regular function of the
following type:

e(r, t) = e(r− r̂vf t) (26)

vf = 1√
µε has the dimension of a velocity and is called

phase velocity.
In the vacuum, vf = 1√

µoεo
= c ≈ 3 · 108 ms−1 is the

speed of light.

Propagation

Eq.(26) describes a propagation phenomenon, i.e.; a
function that travels unchanged in the direction r̂ with
velocity vf

32 / 68



ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’s
equations in
differential
form
Maxwell’s equations

Boundary
conditions

The wave
equation

Potentials

Time-
harmonic
regime
Dynamic fields

Comments

The scalar wave equation

e and h are vector fields

e = (ex ,ey ,ez);
h = (hx ,hy ,hz).

Each component should satisfy the scalar wave equation:

∇2ψ − 1
v2

f

∂2ψ

∂t2 = 0 (27)
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Potentials

To solve practical problems (in particular radiation problems)
it is often convenient using auxiliary functions:

the scalar electric potential, v ;
the vector magnetic potential, a.

Helmholtz’s partition theorem

At the very root the potentials rely on the fact that a given
vector is completely specified once its irrotational and

solenoidal parts are specified.
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Vector potential

The vector potential a is defined by:

b = ∇× a (28)

By substituting (28) in the Maxwell’s equation:

∇× e = −∂b
∂t

one obtains:

∇× e = − ∂

∂t
(∇× a)

∇×
(

e +
∂a
∂t

)
= 0 (29)
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Vector potential

Eq.(29) represents an irrotational field. Hence it can be
written as the gradient of a scalar function v :

e +
∂a
∂t

= −∇v

Hence:
e = −∇v − ∂a

∂t
(30)

The role of auxiliary functions

If one knows the potential functions a and v , the em field
can be obtained using (30) and (28)
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Wave equation

The wave equation for a and v can be obtained starting
from Maxwell’s equations and considering a simple medium:

∇× h = ε
∂e
∂t

+ jo

Using (28) and (30) one obtains:

∇×∇× a = εµ
∂e
∂t

+ µjo = µε

(
∂

∂t

(
−∇v − ∂a

∂t

))
+ µjo

= −µε∇∂v
∂t
− µε∂

2a
∂t2 + µjo
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Wave equation

Using the equality ∇×∇× a = ∇∇ · a−∇2a:

∇∇ · a−∇2a + µε∇∂v
∂t

+ µε
∂2a
∂t2 = µjo

∇2a− µε∂
2a
∂t2 = ∇

(
∇ · a + µε

∂v
∂t

)
− µjo (31)

According to the Helmholtz’s partition theorem, to
completely specify a well-behaved vector field its curl and

divergence are due.
Up to now the curl of a has been specified; hence a degree

of freedom is still available to fix its divergence.
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Wave equation

Hence, the divergence can be chosen to simplify (31):

∇ · a = −µε∂v
∂t

(32)

Eq.(32) is called Lorentz’s gauge. Hence, eq.(31) can be
rewritten as:

∇2a− µε∂
2a
∂t2 = −µjo (33)

This is the inhomogeneous wave equation for the vector
potential a
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Wave equation

To derive the wave equation for the scalar potential v the
divergence equation must be considered:

∇ · e =
ρ

ε

Since e = −∇v − ∂a
∂t :

∇ ·
(
−∇v − ∂a

∂t

)
=

ρ

ε

∇2v +
∂

∂t
∇ · a = −ρ

ε

Using the Lorentz’s gauge:

∇2v − µε∂
2v
∂t2 = −ρ

ε
(34)

This is the inhomogeneous wave equation for v
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Retarded potential

Integral solutions of the two wave equations (33) and (34)
are the so-called retarded potentials

a =

∫
τ

µ[j]
4πR

dτ

v =

∫
τ

[ρ]

4πεR
dτ

Retarded potentials

They are called retarded potentials because [j] and [ρ], i.e.
the source terms, are specified at a time R√

µε earlier than
the time a and v are being determined.
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Time-harmonic regime

Maxwell’s equations in simple media form a linear system;
hence no generality is lost by considering the

“monochromatic” or “steady-state” regime, in which all the
quantities are simply periodic in time, i.e. time-harmonic.

Fourier’s theorem

Note that by Fourier’s theorem, any linear field of arbitrary
time-dependence can be synthesized from the knowledge

of the monochromatic field.
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Phasors

In the time-harmonic regime, e(r, t), h(r, t), d(r, t), b(r, t),
j(r, t) and ρ(r, t), vary sinusoidally in time with an angular

frequency ω.

The one-to-one mapping between the set of time-harmonic
vectors in R3 and the complex-vector space C3 can be
exploited (Steinmetz’s representation):
Let f (r, t) = a(r)cos(ωt + φ(r)) a scalar time-harmonic field
whose angular frequency ω is fixed. According to Euler’s
formula:

a(r)ej(ωt+φ(r)) = a(r)cos(ωt + φ(r)) + ja(r)sin(ωt + φ(r))

Hence:

f (r, t) = a(r)cos(ωt + φ(r)) = <{a(r)ejφ(r)ejωt}
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Phasors

Hence:
f (r, t) = <{Ḟ (r)ejωt}

where:
Ḟ (r) = a(r)ejφ(r) (35)

it is called phasor and it is a complex number
characterized by a one-to-one relationship with a

time-harmonic signal of angular frequency ω.
When a vector field is considered f(r, t):

f(r, t) = a(r)cos(ωt + φ(r)) = <{a(r)ejφ(r)ejωt}

Ḟ(r) = a(r)ejφ(r) = ax (r)ejφx (r)x̂ + ay (r)ejφy (r)ŷ + az(r)ejφz(r)ẑ
(36)

is the generalized phasor associated with the vectorial
time-harmonic field.
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Phasors

Note that to reduce the system to the monochromatic
state, the ejωt time dependence is adopted, which
implies that the following Fourier transforms pair is
understood:

F (ω) =

∫ +∞

−∞
f (t)e−jωtdt (37)

f (t) =
1

2π

∫ +∞

−∞
F (ω)ejωtdω (38)

Note that phasors are indicated using dotted capital
letters. The only exception is the charge density scalar
field function.
Phasors have the same physical dimension of the
un-transformed field functions.
Phasors depend on the spatial coordinate only.
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Steady state Maxwell’s equations

Maxwell’s equations in sinusoidal steady-state

∇× Ė(r) = −jωḂ(r) (39)
∇× Ḣ(r) = jωḊ(r) + J̇(r) (40)
∇ · Ḋ(r) = ρ̇(r) (41)
∇ · Ḃ(r) = 0 (42)

Assuming a simple medium, the constitutive relationships
are given by:

Ḋ(r) = εĖ(r)

Ḃ(r) = µḢ(r)

J̇(r) = σĖ(r)
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Steady state Maxwell’s equations

Remarks

Note that phasors have the same dimensions of the
un-transformed fields.
Note that ε, µ, σ are constants since a simple medium is
considered.
In general ε, µ, σ are phasors.
Hereinafter, to simplify the notation, the dot symbol
which indicates phasors is omitted without ambiguity.

47 / 68



ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’s
equations in
differential
form
Maxwell’s equations

Boundary
conditions

The wave
equation

Potentials

Time-
harmonic
regime
Dynamic fields

Comments

Potentials

Given a time-harmonic source defined by an electric density
Jo(r), the em field generated by this source in the free

space satisfies Maxwell’s equations:

∇× E(r) = −jωµH(r) (43)
∇× H(r) = jωεE(r) + Jo(r) (44)
∇ · εE(r) = ρ(r) (45)
∇ · µH(r) = 0 (46)

Coupling

It can be noted that the electric and magnetic fields are
coupled in these equations. Moreover, the degree of

coupling depends on the frequency.
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Static case

When the frequency approaches 0, the static case is
achieved.

The electrostatic field produced by electric charges is
governed by:

∇× E = 0 , ∇ · εE = ρ (47)

The magnetostatic field produced by electric currents is
governed by:

∇× H = Jo , ∇ · µH = 0 (48)

Note that, to simplify the notation, the phasors’ space
dependence is omitted.
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Electrostatic field

To solve eq.(47), i.e. two first-order PDEs, for a single
unknown vector function E, it must be noted that:

E is an irrotational vector function and, therefore, it can be
expressed as the gradient of a scalar function V which is
called electric scalar potential:

∇× E = 0→ E = −∇V (49)

Considering eq.(45), one obtains:

−∇ · ε∇V = ρ (50)

It is a second-order PDE that, in a homogeneous medium,
becomes:

∇2V = −ρ
ε

(51)

It is called Poisson’s equation.
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Magnetostatic field

To solve eq.(48), i.e. two first-order PDEs, for a single
unknown vector function H, it must be noted that eq.(46)

implies that:

B = µH is a solenoidal vector function; hence it can be
expressed as the curl of a vector function:

B = µH = ∇× A (52)

The vector function A is called magnetic vector
potential.
Substituting eq.(52) in ∇× H = Jo one obtains:

∇×
(

1
µ
∇× A

)
= Jo (53)
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Helmholtz’s partition theorem

Eq.(53) is a second-order PDE that, for a homogeneous
medium, becomes:

∇×∇× A = µJo

∇∇ · A−∇2A = µJo (54)

Since A is a vector field, according to the Helmholtz’s
partition theorem, to completely specify A its curl and
divergence are due.
This is obvious if one consider eq.(53). In fact, it can be
easily proven that this equation is satisfied by A but
also by A +∇f (Note that ∇×∇f = 0).
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Helmholtz’s partition theorem

Since up to now only the curl of A has been specified
through eq.(52), to uniquely determine A its divergence

must be specified.

With the intent to simplify eq.(54), one may set the
divergence of A to zero (Coulomb gauge condition):

∇ · A = 0 (55)

Hence, eq.(54) becomes:

∇2A = −µJo (56)

It is a vector Poisson’s equation
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Electrodynamics fields

Considering the Maxwell’s equation (43)-(46)

Eq.(46) implies that:

B = ∇× A (57)

Hence:

∇× E = −jω∇× A
∇× (E + jωA) = 0 (58)

Eq.(58) can be satisfied introducing the electric scalar
potential V :

E + jωA = −∇V (59)
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Electrodynamics fields

As a matter of fact, E can be obtained once A and V are
known:

E = −∇V − jωA (60)

To obtain the Helmholtz’s equation for the vector
potential A, eq.(60) is substituted into eq.(44):

1
µ
∇×∇× A = jωε (−∇V − jωA) + Jo

∇∇ · A−∇2A = −jωεµ∇V + ω2εµA + µJo

∇2A + ω2εµA = ∇ (∇ · A + jωεµV )− µJo (61)

56 / 68



ERSLab

F. Nunziata

Introduction
Entities

Mathematical
equations

Relationship with
physics

Maxwell’s
equations in
differential
form
Maxwell’s equations

Boundary
conditions

The wave
equation

Potentials

Time-
harmonic
regime
Dynamic fields

Comments

Helmholtz’s equation

As far as for the magnetostatic case, only the curl of the
magnetic vector potential A is specified, see eq.(57).

Hence, its divergence can be specified to simplify eq.(61)
without affecting the field itself.

By choosing (Lorentz gauge condition):

∇ · A = −jωεµV (62)

one obtains:
∇2A− k2A = −µJ (63)

It is the vector Helmholtz’s equation with k2 = −ω2µε
and its roots ±k define the propagation constant.
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Helmholtz’s equation

Poisson’s and Laplace’s equations are special cases of the
Helmholtz equation.

∇2A− k2A = G (64)

where G is the source term.

When k = 0, i.e. ω = 0 static case, the Poisson’s
equation is achieved:

∇2A = G

When k = G = 0, the Laplace’s equation is achieved:

∇2A = 0
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Helmholtz’s equation

Once A is known, the fields H and E can be easily obtained:

H =
1
µ
∇× A (65)

E = −jωA−∇V = −jωA +
∇∇ · A

jωεµ
(66)
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Gauge condition

It must be noted that both in the static and in the dynamic
cases, the specification of the divergence of A is simply for

a unique determination of A itself.

Gauge

Since A is an auxiliary function, its uniqueness is not
important. Even if A is not unique, due to µH = ∇× A, H

will be always unique!
The divergence of A does not affect the solution to the
magnetic field H; hence it can be specified arbitrarily:

Gauge condition.
Same comments apply for a.
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Why using potential functions ?

Helmholtz’s equation was derived for the potential A,
see eq.(63).
However, one can derive Helmholtz’s equation directly
from Maxwell’s equation (43)-(46):

∇×∇× E = −jωµ∇× H = −jωµ (jωεE + Jo)

= ω2εµE− jωµJo

∇∇ · E−∇2E = ω2εµE− jωµJo

∇2E + ω2εµE = ∇∇ · E + jωµJo (67)
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Why using potential functions ?

Since, for a homogeneous medium:

∇ · ∇ × H = jωε∇ · E +∇ · Jo

0 = jωε∇ · E +∇ · Jo

∇ · E = −∇ · Jo

jωε
(68)

Comments

This equation means that, inside a homogeneous medium, the
divergence of the electric field can differ from zero only either
where the flow lines of the imposed current are open, or at the

boundary of the medium.

Hence:

∇2E− k2E = −∇∇ · Jo

jωε
+ jωµJo (69)
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Why using potential functions ?

On the surface, eq.(69) is more complicated than eq.(63).
However, subtle differences exist.

Their left-hand side operators are exactly the same; hence
solutions of the same form are expected, as actually is.

The solution of eq.(63) in the free space is given by:

A(r) =
µ

4π

∫∫∫
τ

J(r′)
e−jkR

R
dτ

E = −jωA +
∇∇ · A

jωεµ
(70)

When eq.(69) is accounted for:

E(r) = − 1
4π

∫∫∫
τ

{
jωµJ(r′)− 1

jωε
∇ (∇ · J(r′))

}
e−jkR

R
dτ

(71)
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Why using potential functions ?

Mathematically, the two approaches to evaluate the fields
from given sources involve the same number of calculations:

A volume integral.
Differential operators.

Differences

The main and subtle difference is that in eq.(71) the
differential operators are applied to the source function;
whereas in eq.(70) these operations are applied to the

vector potential.
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Why using potential functions ?

For source functions that are analytic the two approaches
are indeed equivalent.

Unfortunately, in many practical cases, source functions
do not have such a behavior, e.g. line current and
surface current. In such cases, they need to be
expressed in terms of Dirac delta functions and, hence,
the generalized functions must be used to evaluate
differential operators.
The vector potential function is always analytic in r;
hence differential operators can be applied
straightforwardly.
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Why using potential functions ?

With the introduction of
auxiliary potential functions
the requirement on the form

of the source functions is
significantly relaxed, making
the approach operationally

interesting.
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For further reading

http://www.youtube.com/watch?v=HPcAWNlVl-8
C.G. Someda, Electromagnetic waves,
Chapman & Hall, UK, 1998
C.H. Papas, Theory of electromagnetic
wave propagation, Dover, New York, 1988
J.-M. Jin, Theory and computation of
electromagnetic fields, Wiley, Canada,
2010
G. Gerosa and P. Lampariello, Lezioni di
Campi Elettromagnetici, Edizioni
Ingegneria 2000, Roma, 2006
J.G. Van Bladel, Electromagnetic fields,
IEEE Press, Piscataway, NJ, 2007
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