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Propagation
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From a PDE to ODEs

One of the most used approaches to solve Partial
Differential Equations (PDEs) in mathematical physics is the
so-called method of Separation of Variables (SV).

It basically consists of breaking a given PDE in a set of
Ordinary Differential Equations (ODEs), which can be
solved separately from one another, by isolating each

independent variable in a separate equation.
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SV method

SV method is applicable only under restrictive assumptions:

The PDE must be separable. The set S of solutions
obtained by SV method needs to be a complete set of
solutions. This means that S is dense enough to allow
one writing any PDE solution as a linear combination of
solutions belonging to S. A given PDE is typically
separable only in few reference frames.
The boundary conditions must be separable. Any
differential equation must satisfy suitable boundary
conditions (BC). BCs are themselves separable if the
boundary is a coordinate surface (or a set of coordinate
surfaces) in one of the reference frames where the
PDE is separable.
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The em problem

The PDE which governs both radiation and propagation
phenomena is the so-called Helmholtz equation. It is a

second-order elliptic PDE.

The following electromagnetic (em) problem is defined:
1 Domain: 3D space/ω.
2 Medium: linear, isotropic, homogeneous and lossy.
3 Sources: no imposed currents (Jo = 0).
4 BCs: Sommerfield conditions for the field at infinity.

Uniqueness theorem ensures (ω exterior problem) that,
once the above mentioned requirements are known,

Maxwell’s equations have a unique solution in the given
domain.
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The em problem

The em field satisfying Maxwell’s equation under the
previously stated requirements may be calculated solving

Helmholtz equation for E or H through the SV method.

The Helmholtz equation to be solved is given by:

∇2E− k2
εE = 0 , (1)

where:
k2
ε = −ω2µεc = −ω2µ

(
ε− j

σ

ω

)
. (2)
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SV method: Helmholtz equation

3D Helmholtz equation (1) is separable only in a few
number of coordinate systems which can be derived from

the orthogonal ellipsoidal coordinate system:

1 Orthogonal Cartesian.
2 Circular cylindrical.
3 Elliptical cylindrical.
4 Parabolic cylindrical.
5 Rotation parabolic.
6 Paraboidal.
7 Spherical.
8 Prolate spheroidal.
9 Oblate spheroidal.

10 Conical.
11 / 53
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SV method: Helmholtz equation

A Cartesian orthogonal coordinate system (x1, x2, x3) is
hereinafter adopted:

Eq.(1) can be written by components:

∇2Ei ≡
∂2Ei

∂x2
1

+
∂2Ei

∂x2
2

+
∂2Ei

∂x2
3

= k2
εEi . (3)

The three scalar equations are independent of each other,
hence, the linearity of the medium allows, without loss of
generality, considering:

E = Ex̂1 . (4)
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SV method: Helmholtz equation

The SV method consists of making the following ansatz:

E(x1, x2, x3) = f1(x1)f2(x2)f3(x3) , (5)

which leads to:

f
′′

1
f1

+
f
′′

2
f2

+
f
′′

3
f3

= k2
ε , (6)

where f
′′

j denotes the second derivative of fj .
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SV method: Helmholtz equation

For a fixed ω, k2
ε is constant and, therefore, (6) can be

satisfied if and only if:

f
′′

i
fi

= S2
i i = 1,2,3 , (7)

with the following separation condition:

S2
1 + S2

2 + S2
3 = k2

ε . (8)
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SV method: Helmholtz equation

SV method leads to the following three ODEs:

f
′′

i
fi

= S2
i i = 1,2,3 , (9)

whose general integral can be written as follows:

fi = F1ie−Si xi + F2ieSi xi i = 1,2,3 . (10)

where F1i and F2i are arbitrary complex constants.
The separation equation (8) deals with S2

i . It does not

tell anything about Si = ±
√

S2
i .
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SV method: Helmholtz equation

Accordingly, there is no loss of generality in the following
formula:

E(x1, x2, x3) = f1(x1)f2(x2)f3(x3)

= Eoe−(S1x1+S2x2+S3x3)

= Eoe−S·r , (11)

Propagation vector

S =
∑

i

Si x̂i , r =
∑

i

xi x̂i

are the propagation vector and the position vector,
respectively.
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Electric and magnetic fields

It must be noted that S = a + jk, where a is called
attenuation vector and k phase vector, is such that:

S · S = k2
ε = −ω2µεc .

Note that, since S is a complex vector: S · S 6= S · S∗ = |S|2.

E = Eoe−S·r , (12)

where:
Eo = Eox̂1 .

17 / 53
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Electric and magnetic fields

From Maxwell’s equations, it follows that:

H = −∇× Eoe−S·r

jωµ
. (13)

By invoking the vector identity:

∇× (fA) = f∇× A +∇f × A ,

where f and A are a scalar and a vector function of space
coordinates, (13) becomes:

− Eo

jωµ
∇e−S·r × x̂1 =

S× Eoe−S·rx̂1

jωµ
= Hoe−S·r (14)
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Remarks

From (14) it follows that:

H =
S× E
jωµ

. (15)

This term provides a relationship between E and H
which further confirms that (15) is always true, despite
the restrictive hypothesis of linear polarization
previously made, see eq.(4).
Under the (unnecessary) hypothesis that all the
components of E share the same propagation vector S,
the general solution for E is given by:

E = Eoe−S·r . (16)
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Electric and magnetic fields

Plane waves

The general solution for the em field is given by:

E = Eoe−S·r (17)

H =
S× Eo

jωµ
e−S·r (18)

These equations are referred to a generic reference frame
which can be changed in a completely arbitrary way.
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Remarks

The solution provided by (17)-(18) is physically untenable:
In general, it does not satisfy Sommerfield conditions
and, therefore, the uniqueness theorem (not even in the
case of lossy medium).
It carries on an infinite power.

Nevertheless, the solution (17)-(18) is:

Perfectly legitimate as a mathematical solution of
Maxwell’s equations.
A fundamental brick in building up a
physically-consistent em field.
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Remarks

Inserting (18) in Maxwell’s equation ∇× H = jωεcE:

E =
∇× H
jωεc

=
1

jωεc
∇×

(
S× Eoe−S·r)

jωµ

=
1

jωεc

S
jωµ
× (∇× E) =

1
jωεc

S
jωµ
×−jωµH

= j
S× H
ωεc

= −S× E× S
ω2εcµ

(19)

In the same way:

H = −∇× E
jωµ

=
∇×
jωµ

S× E× S
ω2εcµ

= − jωµ
jωµ

S× H× S
ω2εcµ

= −S× H× S
ω2εcµ

(20)
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Remarks

From (19)-(20) it follows that:

E · S = 0 (21)
H · S = 0

Complex vectors

By similarities with vectors defined in a real space, one may
ERRONEOUSLY think that (21) implies that E, H and S are
mutually orthogonal.

This is actually true only for linearly polarized uniform plane
waves!!
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Plane waves

Inserting S = a + jk in (17)-(18) it follows that:

E = Eoe−(a+jk)·r = Eoe−a·re−jk·r . (22)

The following loci can be defined:

a · r = const - Equi-amplitude planes

It implies |E| = const and |H| = const .
These loci are given by planes orthogonal to the
attenuation vector and are generally called
equi-amplitude or constant amplitude planes.
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Plane waves

k · r = const - Equi-phase planes

It implies ∠Ei = const and ∠Hi = const .
These loci are given by planes orthogonal to the phase
vector and are generally called equi-phase or constant
phase planes.

Since the equi-phase surfaces are generally called
“wavefronts” and, in this case, they are planes; such

solutions of Maxwell’s equations are called:
Plane waves.
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Plane wave wavefronts

At the very root propagation is just the motion of wavefronts
as the time goes!
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Remarks on plane waves

The plane perpendicular to
the vector k is seen from its

side appearing as a line P-W.
The dot product k · r is the

projection of the radial vector
r along the normal to the
plane and will have the

constant value OM for all
points on the plane.

The equation k · r = const is the characteristic property of a
plane perpendicular to the direction of propagation k.
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Plane waves classification

Plane waves can be classified according to the relationship
between the attenuation and phase vectors. It must be
noted that:

kε = α + jβ =
√

k2
ε =

√
−ω2µεc ,

belongs to the first quadrant of the complex plane.
Therefore, β > 0 and α ≥ 0. The latter inequality is
saturated when the medium is lossless.

S · S = a2 − k2 + 2ja · k = k2
ε = −ω2µ

(
ε− j

σ

ω

)
.

Separating real and imaginary parts:

a2 − k2 = −ω2µε (23)
2a · k = ωµσ (24)
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Plane waves classification

From (23) it follows that |k|2 > |a|2 and, therefore:

|k| > 0 , (25)

Traveling solution

According to (25), the solutions of Maxwell’s equations can
never have a constant phase in the region where they are

defined.
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Plane waves classification

The meaning of (24) depends on the fact that the medium is
lossless (σ = 0) or lossy (σ 6= 0).

σ = 0 =⇒ a · k = 0. This is satisfied in either of the two
following cases:

1. a = 0.
This implies that |E| = const and |H| = const hold for
the whole 3D space. Therefore, any plane is a
equi-amplitude plane. Generally, a convention is
adopted which makes equi-amplitude planes coincident
with the equi-phase ones.
Such a wave is called uniform plane wave.
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Plane waves classification

2. a 6= 0 and a ⊥ k.
It follows that:

|k| > |a| ,

Evanescent wave

Therefore, equi-phase planes are orthogonal to
equi-amplitude ones. This implies that this wave attenuates
while propagating in a lossless medium.
Such a wave is called evanescent plane wave.
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Uniform vs evanescent plane wave

http://www.olympusmicro.com/primer/techniques/fluorescence/tirf/tirfintro.html
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Plane waves classification

σ 6= 0 =⇒ a · k > 0. This means that:
|a| 6= 0. The wave attenuates while propagating in a
lossy media.
The angle between a and k is smaller than π/2.

Such a wave is called dissociated plane wave.

It must be explicitly pointed out that, in the special case
where a and k are parallel, the wave is still called

uniform plane wave.
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In a nutshell

The classification depends on medium parameters only
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Remarks on orthogonality

It can be shown that E, H and S are mutually orthogonal if
and only if the following conditions are satisfied:

1 The wave is linearly polarized.
2 a and k are parallel (including also the special case

a = 0).
This means that, both in a lossless and in a lossy medium,
the three above mentioned vectors are mutually orthogonal
only for:

linearly polarized uniform plane waves

Note that orthogonality between the complex vectors E, H
and S should not be confused with orthogonality between
instantaneous time-harmonic vectors. The latter are of
course mutually orthogonal!!!
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Linearly polarized uniform plane waves
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Traveling waves

To analyze the physical features that characterize the plane
wave solution, eq.(17) is transformed into the correspondent

time-domain solution:

e(r, t) = <(Eoe−S·rejωt ) = Eoe−a·rcos(ωt − k · r) (26)

where, without any loss in generality, Eo is assumed to be a
real constant.

Traveling wave

e(·) varies sinusoidally in time and (neglecting the
exponential decay factor) in space.

A wave of this kind is called a Traveling Wave
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Do it yourself - Plane wave lossless case

Eq. (26); x = y = 0 : 0.01 : 2;λ = 1; t = 0 40 / 53



ERSLab

F. Nunziata

Motivation

SV method
Helmholtz eq.

Plane waves
Classification

Traveling waves

Phase velocity

Poynting vector

Appendix
For Further Reading

Do it yourself - Plane wave lossy case

Eq. (26); x = y = 0 : 0.01 : 2;λ = 1; t = 0;α = 1 41 / 53
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Do it yourself - Spherical wave lossless case

Spherical wave: e−jkr with r =
√

x2 + y2 42 / 53
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Do it yourself - 2D time evolution

x = y = −1 : 0.01 : 1, λ = 1m, t = linspace(0, 60e − 9, 100) 43 / 53
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Phase velocity

Eq.(26) is a traveling wave and the factor cos(k · r− ωt)
describes an ondulatory motion.

The ondulatory motion can be
analyzed by looking at points

with constant phase:

d(k · r− ωt) = 0

k · r̂ dr − ωdt

vf (r̂) =
dr
dt

=
ω

k · r̂
=

ω

|k|cosϑ
(27)
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Phase velocity

The minimum value of (27) is obtained when k̂ = r̂ :

vf =
ω

|k|
In a lossless medium two cases must be analyzed:

a = 0 - Uniform plane wave. According to (23):

|k| = ω
√
µε = β =

2π
λ
, vf =

1
√
µε

Note that in the vacuum vf = c.
a 6= 0 - Evanescent wave. According to (23):

vf <
1
√
µε

The evanescent wave in a lossless medium is also
called “slow wave”

Lossy medium. Since a 6= 0, vf <
1√
µε .
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Poynting vector

The Poynting vector is defined as:

P =
E× H∗

2
(28)

Hence, replacing E and H with the traveling wave
solution (17-18) and considering that S + S∗ = 2a, one
obtains:

P =
Eo × (S∗ × E∗o)e−2a·r

2jωµ
(29)

Invoking the vector identity:
A× (B× C) = (A · C)B− (A · B)C:

Poynting vector

P =

(
|Eo|2

2jωµ
S∗ +

Eo · S∗

2jωµ
E∗o

)
e−2a·r (30)
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Poynting vector

Plane wave solution is physically untenable

P depends on space coordinates only through the
exponential factor e−2a·r:

This implies that the flux of P through any plane in
space is infinite.

This is physically untenable.

To determine the direction of P it is convenient to analyze
separately the cases of uniform, evanescent and

dissociated waves.
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Poynting vector: TEM wave in a lossless
medium

A uniform plane wave calls for S = jk = jβk̂ = jω
√
µεk̂

that implies: Eo ⊥ k. Hence, eq.(30) becomes:

P =
|Eo|2

2ωµ
βk̂ (31)

=
|Eo|2

2

√
µ

ε
k̂

=
|Eo|2

2η
k̂

where η =
√

µ
ε is the intrinsic wave impedance and k̂ is

aka direction of wave normal.

Poynting vector

The complex power carried by a uniform plane wave is real,
hence it consists of active power only.
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Uniform plane wave: TEM wave

The wave fronts are constant phase surfaces separated by one
wavelength λ. The wave vector k is normal to the wave fronts and
its length is the wavenumber β. Note that, since η ≈ 377Ω, The

electric and magnetic field components are in phase. 51 / 53
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For Further Reading I

C.G. Someda. Electromagnetic Waves
CRC press - Taylor & Francis, Boca Raton, FL, 2006.
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