Corso di Sistemi Informativi Geografici/Laboratorio GIS

Corso di Cartografia Numerica e GIS

A.A. 2017-18

Esercitazione n. 3

Si ricorda agli allievi che la risoluzione di qualunque esercizio del Corso non può avvenire senza aver studiato dapprima la teoria. Tale principio, valido per tutte le esercitazioni, è ancora più veritiero per questa esercitazione.

1. Vengono forniti i residui riscontrati in 15 punti di controllo (Check Points) su un file vector georiferito con trasformazione affine e relativo ad una cartografia in scala 1:50.000. Stabilire se i residui rientrano nei limiti accettabili in relazione alla scala di rappresentazione.

Check point	Residuo in x (in	Residuo in y
	metri)	(in metri)
1	-5,45	-4,34
2	-5,23	4,45
3	3,56	4,34
4	4,32	-3,91
5	4,1	3,98
6	1,23	3,45
7	-2,23	3,7
8	2,45	-0,98
9	3,95	4,25
10	4,35	5,45
11	6,78	-4,89
12	4,98	3,56
13	-6,01	5,56
14	3,23	4,82
15	5,34	3,91

L'esercizio è facilmente risolvibile con l'ausilio di un foglio di calcolo (Excel). Si calcolano i residui in xy (composizione della distanza euclidea: applicazione del teorema di Pitagora).

Esempio:

residuo xy nel Punto
$$1 = \sqrt{(\text{residuo x})^2 + (\text{residuo y})^2} = \sqrt{(-5,45 \text{ m})^2 + (-4,34 \text{ m})^2}$$

I residui r_{xyi} debbono essere calcolati per tutti i punti e se ne determina il valore medio r_m e la deviazione standard σ .

In merito alla deviazione standard, si ricorda che, per un numero di punti pari o maggiore di dieci si utilizza la formula:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (r_i - r_m)^2}{n}}$$

Quindi nel numeratore della frazione va inserita la sommatoria delle differenze al quadrato tra ciascun residuo e il valore medio di tutti i residui. Si ipotizza che i residui siano distribuiti secondo la curva di Gauss. Si assume come valore massimo statistico da rispettare (probabilità di essere superato pari al 2,3%) quello fornito dalla formula:

valore massimo accettabile = valore medio $+ 2\sigma$.

Si verifica se il residuo massimo accettabile è minore o uguale all'errore connesso alla scala 1:50.000

Valore dell'errore connesso alla scala = (errore di graficismo x denominatore della scala) = 0,2 mm x 50.000 = 10.000 mm = 10 m

Nell'esercizio proposto si ha:

 $r_m = 5.964924 \text{ m};$

 $\sigma = 1,489679 \text{ m}$

valore medio $+2\sigma = 8,944282 \text{ m}$

Poiché il valore trovato 8,944282 m è minore di 10 m (errore connesso alla scala), la georeferenziazione ha prodotto residui accettabili per la scala e quindi tale georeferenziazione è valida.

2. Vengono forniti i residui riscontrati in 9 punti di controllo (Check Points) su un file vector georiferito con trasformazione affine e relativo ad una cartografia in scala 1:25.000. Stabilire se i residui rientrano nei limiti accettabili in relazione alla scala di rappresentazione.

Check point	Residuo in x	Residuo in y
	(in metri)	(in metri)
1	1,2	-1,5
2	1,5	1,3
3	1,6	1,9
4	2,1	2,1
5	-1,4	1,2
6	1,9	1
7	1,2	-0,3
8	-1,4	1,3
9	0,8	1,8

L'esercizio è analogo al precedente.

Questa volta però i punti sono meno di dieci. Il procedimento resta lo stesso, ma la formula della deviazione standard diventa:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (r_i - r_m)^2}{n-1}}$$

Nell'esercizio proposto si ha:

 $r_m = 2,051986 \text{ m};$

 $\sigma = 0.473572 \text{ m}$

valore medio $+2\sigma = 2,999131 \text{ m}$

Poiché il valore trovato è minore di 5 m (errore connesso alla scala), la georeferenziazione ha prodotto residui accettabili per la scala e quindi tale georeferenziazione è valida.

3. Per georiferire una cartografia raster sono stati utilizzati 16 punti noti in coordinate geografiche. Vengono forniti i residui riscontati in 8 punti di controllo sul file georiferito. Stabilire a che scala di rappresentazione può essere ritenuto valido il file.

Check	Residuo in x (in	Residuo in y
point	metri)	(in metri)
1	18,2	-16,5
2	18,5	17,3
3	19,6	16,9
4	20,1	20,1
5	-19,4	19,2
6	18,9	17
7	19,2	-19,3
8	-18,4	19,3

L'esercizio è per molti versi analogo ai due precedenti. C'è una differenza sostanziale:

la scala non è già nota, ma va determinata.

Poiché i punti sono meno di 10, la formula della deviazione standard è quella riportata nell'esercizio 2.

Nell'esercizio proposto si ha:

 $r_m = 26,35060671 \text{ m};$

 $\sigma = 1,274710431 \text{ m}$

valore medio + $2\sigma = 28,90002758 \text{ m}$

Questa volta la scala è incognita, quindi si ha:

errore nella realtà = Denominatore della scala x errore di graficismo quindi:

Denominatore della scala = errore nella realtà / errore di graficismo

Nell'esercizio proposto si ha:

Denominatore della scala = 28,90 m / 0,2 mm = 28900 mm / 0,2 = 144500,1

Nella realtà commerciale, i numeri dei denominatori di scala sono numeri interi e solitamente multipli di 100, 500, 1000, 2000, 5000, 10000 ecc., a seconda della grandezza della scala. Si approssima quindi il risultato, tenendo conto di assicurare un margine di sicurezza (quindi il denominatore deve aumentare, non diminuire). Nel caso specifico:

scala della carta = 1:150.000

Esercizio proposto

Vengono forniti i residui riscontrati in 12 punti di controllo sul file georiferito. Stabilire a che scala di rappresentazione può essere ritenuto valido il file.

Check point	Residuo in x (in	Residuo in y
	metri)	(in metri)
1	-52,5	-44,4
2	-37,2	41,5
3	39,6	40,4
4	47,2	-39,9
5	48,1	25,9
6	45,3	41,5
7	-48,2	39,7
8	45,4	-20,8
9	39,5	42,5
10	49,3	50,4
11	45,8	-34,9
12	42,9	37,3